
IOI’04

Enumerating Hurdles

September 16, 2004

1 The problem

In comparing two DNA sequences, biologists have found out that a powerful model is based
on assigning integers to genes, then compare the number of “hurdles” (to be defined below)
in each sequence. This approach was used in the 1980’s to explain the genetic similarity
between cabbage and turnip, in terms of evolutionary change.

Formally, we shall study permutations of the identity sequence σI = 〈 0 1 2 . . . N (N + 1) 〉,
such that 0 is always the first element, (N + 1) is always the last element and no two
consecutive integers x (x + 1) exist. The central question is to find the number and the
location of certain subsequences, called hurdles, which are defined below.

Define a framed interval of a sequence σ to be an interval of the form:

i σj+1 σj+2 . . . σj+k−1 i + k,

such that all integers between i and i+k (k ≥ 1) belong to the interval [i+1 . . . i+k−1]. The
length of the framed interval is the number of elements it contains including its endpoints.
As a result, the length of the above framed interval is k + 1. The starting point of the above
framed interval is j, while the finishing point is j + k.

Hurdles are defined as framed intervals that contain no shorter framed intervals.

Your task is to write a program that, given a sequence of positive integers, finds the number
of hurdles in the sequence. Your program shall also output the starting and finishing points
of every hurdle.

Input: hurdles.in
The input is a permutation of the identity sequence σI that does not contain two consecutive
integers in consecutive positions.

• The first line of the input contains the number of the elements that appear in the
sequence, namely N + 2.

• Each of the next N + 2 lines of the input contains an integer that represents the value
of the corresponding element of the sequence.

As an example, the input on sequence σ1 = 〈 0 3 5 4 6 2 1 7 〉 would be:

1

Example input:
8
0
3
5
4
6
2
1
7

Output: hurdles.out
The first line of the output will contain a number that represents the number of hurdles, say
M , found in the input sequence.

The next M lines will contain each a pair of numbers i, j, separated by a blank space,
representing the starting and finishing points of each hurdle, subject to i, j ∈ {1, N + 2}.
The hurdles must be sorted in increasing order of their starting points i.

The output of the above example should be:

Example output:
1
2 5

Now, let’s see why the above output is correct. The entire input sequence σ1 is a framed
interval. Moreover, we have the framed interval 3 5 4 6, which can be reordered as 3 4 5 6.
According to the definition, the interval 3 5 4 6 is a hurdle. This is the only hurdle in the
above sequence: It has its starting point at index 2 and its finishing point at index 5.

2 Solution

Signed permutations are important in the study of DNA sequences [Ber01].

For each framed interval the following hold:
Fact 1: The starting (Fs) and finishing (Ff) point of a framed interval F are related with
the following equation:

Value (Ff) = Value (Fs) + length(F) − 1 (1)

Fact 2: All values in the interior points of a framed interval are distinct and cover the entire
interval [i + 1, i + k − 1] exactly once.

2.1 Simple

A simple algorithm is the following. For each element i of the sequence one exhaustively seeks
for framed intervals of length 2 ≤ l ≤ (|σ| − i + 1) starting at element i, where |σ| = N + 2 is
the number of elements contained in the sequence σ. For each pair (i, j) the corresponding
length induces, someone inspects whether Fact 1 holds or not. If it does, then according to
Fact 2 one must verify that all elements that lie in between are proper so that this interval is
in fact a framed interval. We have O(n2) pairs (i, j), and for each interval these pairs induce,

2

we require O(n) time to verify that this is a framed interval whenever Fact 1 holds. Thus,
this part of the algorithm takes O(n3) time. During this part of the algorithm one keeps
track of candidate hurdles starting at index i. Of course there is no need to keep track all
of O(n) framed intervals that might exist starting at index i, since all framed intervals that
don’t have minimum length can not be hurdles.

Moreover, according to our definition of hurdles, the algorithm requires another part so as to
eliminate all those framed intervals that contain shorter framed intervals starting at different
points. At this final part of the algorithm we have O(n) candidate hurdles. For each one of
them one can verify in O(n) time if another candidate hurdle is contained and decide whether
this candidate hurdle is really a hurdle or not. This step of the algorithm takes O(n2) time.

As a result, the entire algorithm takes O(n3) time.

2.2 Clever

Fact 3: The element with the minimum value in a hurdle is always the starting point of the
hurdle.

Fact 4: The element with the maximum value in a hurdle is always the finishing point of
the hurdle.

Crucial observation: An important observation for the proposed algorithm is stated by
the following lemma:

Lemma 2.1 The endpoint(s) of a hurdle can not be in the interior of another hurdle.

Proof

Case 1: Both endpoints of a hurdle lie in the interior of another hurdle. Then obviously
according to definition, one of the above framed intervals can not be a hurdle, which is
a contradiction.

Case 2: Only one endpoint of a hurdle lies in the interior of another hurdle.

Suppose for the purpose of contradiction that a hurdle H2 has its starting point k in the
interior of another hurdle H1, a situation like the one shown in Figure 1. Then, based

0 N + 1
i jk l

H1

H2

x

Figure 1: Proof for the second case.

3

on the preceding facts we have:

Value (i) < Value (k) < Value (j) < Value (l), (2)

since the kth element is an interior point of hurdle H1 and jth element is an interior
point of hurdle H2. Now pick an element with index x at random such that k < x < j.
Obviously, this element belongs to hurdle H1, so Value (x) < Value (j). Moreover, x
belongs to hurdle H2, so Value (k) < Value (x). In other words, every element with
index x, such that k < x < j, implies that:

Value (k) < Value (x) < Value (j). (3)

Finally, there is no other element y that implies (3) outside of the interval [k+1, j −1],
since if it were, then either hurdle H1 would not be a hurdle, or H2. As a result, all
intermediate values lie in this interval (shown with red line) and as a consequence we
have a framed interval. But this is a contradiction to our assumption that intervals
[i, j] and [k, l] form two different hurdles. This completes the proof.

Note: In fact, in the above case we can prove something even stronger. Since all elements in
the interval [k+1, j −1] imply equation (3), all elements in the interval [i, k] (blue line) imply
that this region is also a framed interval since they belong to framed interval [i, j]. Finally, all
the elements in the interval [j, l] (yellow line) imply that this region is also a framed interval,
since they belong to framed interval [k, l].

So, a better way to handle this problem is to find a ”most suitable” candidate framed interval
for each element i. This can be achieved by scanning sequentially the elements of the given
sequence from left to right and at the same time remembering the maximum value (max)
found so far. Now, if someone finds an element x that has value Value(x) = max +1 and at the
same time Fact 1 is satisfied, it is easy to see that this implies the end of a framed interval.
Since we have O(n) elements to check and for each one of them we have O(n) elements to
scan, it is straightforward that in order to find all candidate framed intervals takes O(n2)
time. On the following we present the algorithm in pseudocode assuming that the elements
of the sequence are given in array SEQ. The algorithm returns array FRAMED, where it
is stored the length of a candidate hurdle starting at position i.

Clever Candidate Enumeration(SEQ[])
1 for i ← 0 to N + 1
2 do FRAMED[i] ← nil
3 for i ← 0 to N
4 do max ← SEQ[i]
5 for k ← 1 to N + 1 − i
6 do if ((SEQ[i + k] = SEQ[i] + k) AND (SEQ[i + k] = (max + 1)))
7 then FRAMED[i] ← k + 1
8 else if (SEQ[i + k] < SEQ[i])
9 then break

10 else if (SEQ[i + k] > max)
11 then max ← SEQ[i + k]
12 return FRAMED

As in the previous algorithm, we can perform the elimination of false alerts in O(n2) time.

4

2.2.1 Elimination of false alerts in linear time

Based on the preceding lemma one can easily decide which of the candidate hurdles are in
fact hurdles and not false alerts in linear time. One must keep track of the length of each
candidate hurdle at its starting position in an array FRAMED. We say that a candidate
hurdle is active if we examine elements in the interior of the hurdle.

The idea is the following. One scans sequentially the array FRAMED, and if he encounters
a starting position of a candidate hurdle H2 while a candidate hurdle H1 is active, then case
1 of lemma 2.1 must apply because the candidate hurdle H1 is a framed interval of minimum
length starting at the starting position of candidate hurdle H1. This process requires no
more than N + 1 queries on array FRAMED and as a result its running time is O(n). The
elimination algorithm is given with the following pseudocode:

Linear Elimination(FRAMED[])
1 i ← 0
2 while (i < N + 1)
3 do if (FRAMED[i] �= nil)
4 then k ← i + 1
5 while (k < FRAMED[i] + i − 1)
6 do if (FRAMED[k] �= nil)
7 then FRAMED[i] ← nil
8 break
9 k ← k + 1

10 i ← k − 1
11 i ← i + 1
12 return FRAMED

Finally, either way we choose to eliminate false alerts, this algorithm has running time O(n2).

2.3 Advanced

This problem can be solved in superlinear O(nα(n)) [BH96] and linear (O(n)) [BMY01] time
if someone uses graphs. These results come from one of the most exciting areas in computer
science in the last decade which was pioneered by Hannenhalli and Pevzner [HP95] and have
rather simple implementations.

A detailed treatment of the field that inspired this problem can be found at [Sie01].

References

[Ber01] Anne Bergeron. A Very Elementary Presentation of the Hannenhalli-Pevzner The-
ory. CPM 2001 - Lecture Notes in Computer Science, 2089:106–117, April 19 2001.

[BH96] Piotr Berman and Sridhar Hannenhalli. Fast Sorting by Reversal. Proceedings of
the 7th Annual Symposium on Combinatorial Pattern Matching, pages 168–185,
1996.

[BMY01] Bader, Moret, and Yan. A Linear-Time Algorithm for Computing Inversion Dis-
tance between Signed Permutations with an Experimental Study. In Lecture Notes
in Computer Science, editor, WADS: 7th Workshop on Algorithms and Data Struc-
tures, volume 2125, pages 365–376, 2001.

5

[HP95] Sridhar Hannenhalli and Pavel Pevzner. Transforming Cabbage into Turnip. Pro-
ceedings of the 27th Annual Symposium on Theory of Computing (STOC95), pages
178–189, 1995.

[Sie01] Adam C. Siepel. Exact Algorithms for the Reversal Median Problem. Master’s
thesis, University of New Mexico, December 2001.

[Sie02] Adam C. Siepel. An Algorithm to Enumerate All Sorting Reversals. RECOMB,
pages 281–290, April 2002.

6

���������
	����	

��������������������� �"!$#%�'&(�)#)*,+.-0/1��2
!$�3�4�65879�:�3;<��2�=
>?���@#�!$ACB�5D+
#)��&)&(�@&E*,2F������� �"!$#
�?&(�)#)* +C-0GHA�IJ���
��2
!$�)�1�65LK@�.�);
�12�=
>?���@#E!�AM!$� *,N$�4�)#)���@&O* 2P�'���RQ<IS�1;��TNU��VSK@�CWX7��
,AY����,&Z�8�
�@� �[!U#ZK@�CWX7��:\^]_*,AY����*,&Z�8&`�3#(* +.-
a !U2
&(* �
��#b2<!cId�3;
�LAe!U�,� !fIZ* 2<g�h_i�j1k�lmj a hn+<#)!U�
�,�@>oVP>F��prqXsTt<u�wv9x K@�zy��{Q�&)=
B|;
�3;���� qXsTt<u�wv9x 79�,y��~}����$2<��y��4�����<�T]$��Q�IZ;
��#)�F2.Q�>���#)���3;
�b2�=
>?���@#(&�!$AS���@�,�
&
�$2
�o&(�)#)* +<&4#(�@&(+9��B��3*�NU���,5U-
j~2L!U+m�3* >�=
>�&)!U�,=<�3*,!U2Fy��� Q9]{}^�%}^7'����Q
!�A��3;
*,&J+
#(!U�
� ��>�B@!U2
&(* &`�3&E!$AY�?&(=
�
&(���
!$A.���C&(=
B|;"�);������3;
�4�3!$�3�$��2�=
>?���@#�!$A.�3;<�@* #�B�5D+
#(�@&(&)�@&O*,&����J>b!U&`�E����2
�F�);
���)!$�|�$�
2�=
>?���@#{!$AS�);
�b* 2
B�� =
�
����!U� *�NU�?�3#(�@��&'*,&{>F��pm* >b* ���@�.-?��!fIJ��NU��#�* 2�gU��2
�@#)�$�%�_�MW
q�sft<u�wv9x 79�zy��J���b-'GHA��);
* &�*,&~�3;<��BT�$&(�$Q.�3;<�@2��3;
��#)�8* &~&)!U>b������&)=
B|;��3;
����y��� W��
�$2
�b79�Y�^�\P�_�eQ6Ae!U#�!$�);
�@#`IZ* &(�Z�);
�Z!U+<�)* >?=
>�&)!U�,=<�3*,!U2�BT��2F���Z* >b+
#)!fNU���F�65��);
�
* 2
B�� =
&(* !U2�!$A:���RQ��1B@!U26�3#)�$�
,B��3,!U2.-Y�O;
�@#(��Ae!U#(�$QD�$�
�<* 2
g��1B|;
�$* 28!$A9��\b� � B�5D+
#(�@&(&)�@&
!$AY���Y�$2<�o*��3&Z��\�_��\]{!$� *,N$�~�3#(�@��&4�)!?�3;
�_!U+<�)* >?=<>d&(!U� =<�)* !U2L!�AM�);
��¡�2��$+
&)�$B|¡
+
#)!$�
� ��>��$�9!fN$�$Q�5m*,�@�,�
&��3!¢�$2!U+m�3* >�=
>£&(!U� =<�)* !U2C-b�O;<�Ph_i�j~kSlDj a h¤+
#)!U�<� �@>
BT�$2����?&(!U�,N$�@��!U+<�)* >F�$� ��5P*,2¦¥¦§|¨e7P� �o©`�'ª��3*,>F�{�65¦�"/~5m2
�$>F*,B�k�#(!UgU#3��>F>b* 2
g
�$� g$!U#)*��3;
>o-

]

Use Dynamic Programming:

Let a(x, y) be the wasted area for a rectangle (x, y), 1 ≤ x ≤ W , 1 ≤ y ≤ H.
Initially, put a(x, y) = xy, for all (x, y) except for the ones corresponding
to needed plates, e.g. x = wi and y = hi, 1 ≤ i ≤ N , for which we put
a(x, y) = 0. For a plate (x, y) consider all vertical cuts c = 1, 2, . . . , x − 1
and all horizontal cuts c = 1, 2, . . . , y − 1 and chose the cut producing the
minimum wasted area a(x, y) = a(c, y)+ (x− c, y) or a(x, c)+a(x, y− c) for
some c.

1

